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Abstract
A simple Mathematica code based on the differential realization of hard-core
boson operators for finding exact solutions of the periodic-N spin-1/2 systems
with or beyond nearest neighbor interactions is proposed; it can easily be used to
study general spin-1/2 interaction systems. As an example, the code is applied
to study XXX spin-1/2 chains with nearest neighbor interaction in a uniform
transverse field. It shows that there are [N/2] level-crossing points in the ground
state, where N is the periodic number of the system and [x] stands for the
integer part of x , when the interaction strength and magnitude of the magnetic
field satisfy certain conditions. The quantum phase transitional behavior in the
ground state of the system in the thermodynamic limit is also studied.

As is well known, a finite periodic spin-1/2 chain with nearest neighbor interaction in a
uniform transverse field is exactly solvable by using either Bethe ansatz or transfer matrix
techniques [1–6]. Similar spin chain models have attracted a lot of attention recently due to the
fact that they may be potentially helpful in quantum information processing [7–9] and realizable
by using quantum dots, optical lattice or spin interaction systems [10–13]. Quantum phase
transitions (QPTs) and entanglement in these systems are of great interest because there are
intimate links between QPTs and entanglement [9, 14–16]. Though a numerical Bethe ansatz
solution to the problem is possible and helpful in the large-N limit, it is too complicated and
difficult to compile into a practical algorithm for cases of large but finite N . More importantly,
there is still a need for a simple approach to exact solutions of spin systems beyond nearest
neighbor interactions. In this paper we report an exact diagonalization algorithm for spin-
1/2 systems written in Mathematica by using a differential realization of the hard-core boson
operators. The simple code can easily be used to study general one-dimensional spin-1/2
interaction systems, such as XY or XYZ spin-1/2 chains. As an example, the code is applied to
study XXX spin-1/2 chains with nearest neighbor interaction in a uniform transverse field,
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showing that there are a series of level-crossing points when the interaction strength and
magnitude of the magnetic field satisfy certain conditions similar to the situation in the XX
spin chain studied in [17]. The entanglement measure [18, 19] defined in terms of the von
Neumann entropy of one-body reduced density matrix is used to measure the multi-particle
entanglement and reveal the QPTs in the system.

The Hamiltonian of the XXX spin- 1
2 chain with nearest neighbor interaction in a uniform

transverse field, for example, can then be written as

HXXX = J
N∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

) + h
N∑

i=1

Sz
i , (1)

where J > 0 (< 0) corresponds to the anti-ferromagnetic (ferromagnetic) case, h is a
uniform transverse field, Sμ

i (μ = x, y, z) are spin operators satisfying the SU(2) commutation
relations and the periodic condition Sμ

i+N = Sμ

i is assumed.

Then, by using the hard-core boson mapping: S+
i = Sx

i +ı Sy
i → b†

i , S−
i = Sx

i −ı Sy
i → bi ,

and S0
i = Sz

i → b†
i bi − 1

2 , where bi and b†
i satisfy [bi , b†

j ] = δi j(1 − 2b†
j b j), [b†

i , b†
j ] =

[bi , b j ] = 0, and (bi)
2 = (b†

i )
2 = 0, (1) can be expressed as

HXXX = J
N∑

i=1

(
1
2 (b

†
i bi+1 + b†

i+1bi) + (b†
i bi − 1

2 )(b†
i+1bi+1 − 1

2 )
)

+ h
N∑

i=1

(
b†

i bi − 1
2

)
. (2)

Finally, by using the differential realizations for the boson operators with b†
i → xi , bi → ∂i ,

(2) can be rewritten as

HXXX = P
(

J
N∑

i=1

(
1
2 (xi∂i+1 + xi+1∂i ) + (xi∂i − 1

2 )(xi+1∂i+1 − 1
2 )

) + h
N∑

i=1

(
xi∂i − 1

2

)
)
P,

(3)

where P is an operation to project a state with (xi)
q = 0 (i = 1, 2, . . . , N) for q � 2 due to

the hard-core restriction. Namely, the Bargmann variables {xi} satisfy the nilpotent condition
(xi)

q = 0 ∀ i when q � 2, which is nothing but the hard-core restriction for the bosons with
(b†

i )
2 = 0. One can easily verify that a differential realization with such restriction is consistent

with the commutation relations of the hard-core boson operators.
Because the total number of bosons, k̂ = ∑N

i=1 b+
i bi , is conserved, the k-‘particle’

wavefunction of (3) can be expressed in terms of kth order homogenous polynomials of {xi}
with

F (ζ )

k (x1, . . . , xN ) =
∑

1�i1<i2<···<ik�N

C (ζ )

i1i2···ik
xi1 xi2 · · · xik , (4)

where C (ζ )

i1i2···ik
is the expansion coefficient and ζ is used to label different eigenstate with the

same k. Using (3) and (4), one can establish the eigenequation

HXXX F (ζ )

k (x1, . . . , xN ) = E (ζ )

k F (ζ )

k (x1, . . . , xN ) (5)

which is a second order linear partial differential equation that can easily be solved with a
Mathematica code3. It should be stated that the first projection P at the end of (3) becomes an
3 The Mathematica code for solving the eigenequation (4) is as follows, where we set n ≡ N and h = 0 in the code as
an example: n = 8; k = 3; basis = Flatten[Table[x[i1]x[i2]x[i3], {i1, 1, n}, {i2, i1 + 1, n}, {i3, i2 + 1, n}]]; coefficients
= Flatten[Table[c[i1, i2, i3], {i1, 1, n}, {i2, i1 + 1, n}, {i3, i2 + 1, n}]]; w = Sum[coefficients[[d]]basis[[d]], {d, 1,
Flatten[Dimensions[basis]][[1]]}]; s = 0.5Sum[x[i]D[w, x[i + 1]] + x[i + 1]D[w, x[i]], {i, 1, n - 1}] + 0.5(x[1]D[w,
x[n]] + x[n]D[w, x[1]]) + (Sum[x[i]x[i + 1]D[D[w, x[i]], x[i + 1]], {i, 1, n − 1}] + x[1]x[n]D[D[w, x[1]], x[n]]
− kw + (n/4)w); Do[ss[q] = Coefficient[s, basis[[q]]], {q, 1, Flatten[Dimensions[basis]][[1]]}]; Do[x[i] = 0, {i, 1,
n}];st = Flatten[Table[ss[d], {d, 1, Flatten[Dimensions[basis]][[1]]}]]; H = Table[Coefficient[st[[i]], coefficients[[j]]],
{i, 1, Flatten[Dimensions[basis]][[1]]}, {j, 1, Flatten[Dimensions[basis]][[1]]}]; Eigenvalues[H]; Eigenvectors[H];
Clear[x].
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identical operation since there is no (xi)
q with q � 2 occurring in (4), while the final projection

P should be considered in the code, which can simply be realized by setting xi = 0 ∀ i after the
matrix elements of the Hamiltonian being constructed. Though only an example with N = 8
and k = 3 for the XXX spin chain with nearest neighbor interaction Hamiltonian HXXX/J
with h = 0 is shown in footnote 1, it is obvious that the procedure shown in footnote 1 can
easily be extended to more general cases, such as XY or XYZ spin- 1

2 chain models with or
beyond nearest neighbor interaction. It can be seen from footnote 1 that we first construct the
eigenequation of the XXX model Hamiltonian in the x-representation. Then we can obtain the
energy submatrix for any k, which can be output to other codes for diagonalization. Hence, the
original 2N dimensional energy matrix is reduced to N !/(N − k)!k! dimensional submatrices.
Once the eigenenergy E (ζ )

k /J and the corresponding eigenvector {C (ζ )

i1i2···ik
} are known after

diagonalization, the final wavefunction can be expressed as

|k; ζ 〉 = F (ζ )

k (b†
1, . . . , b†

N )|0〉, (6)

where |0〉 is the boson vacuum and thus the SU(2) lowest weight state with S−
i |0〉 = 0 ∀ i .

As an example of application of the code, in the following we study the quantum phase
transitional behavior of the finite periodic XXX spin- 1

2 chain with nearest neighbor interaction
in a uniform transverse field. One can verify that there is no quantum phase transition for
the ferromagnetic case with J < 0, in which the ground state of the system with J < 0
remains unchanged in the variation of the magnitude of the magnetic field. Quantum phase
transition occurs only in the anti-ferromagnetic cases with J > 0, which will be considered
in the following. In order to investigate the QPT behavior of the system for J > 0, we set
J = J0(1 − t) and h = J0t with 0 � t � 1, where J0 > 0 is a scaling factor. It is clear
that the ground state of the system is in the ferromagnetic (unentangled) phase when t = 1
and in the anti-ferromagnetic long-range order (entangled) phase when t = 0. Therefore, t
serves as the control parameter of the system. In the XXX case, in addition to S0 = k − N/2,
the total spin of the system S is also a good quantum number. Therefore, the wavefunction
(5) can further be written as |S0 = k − N/2; S, ξ〉, where the additional quantum number
ξ is used to label different eigenstates with the same S and S0. Though one can only obtain
an eigenstate with fixed S0 from the code, one may get information about the total spin S
by acting on the total spin-lowering operator S− = ∑N

i=1 S−
i to the state. For example, the

state |S0 = −N/2; S = N/2, ξ〉 must satisfy S−|S0 = −N/2; S = N/2, ξ〉 = 0, while
|S0 = 1− N/2; S = N/2−1, ξ〉 must satisfy S−|S0 = 1− N/2; S = N/2−1, ξ〉 = 0, and so
on, which enables us to find the corresponding quantum number S for each eigenstate. For N
odd cases, the eigenstates with S0 = k−N/2 and S = N/2−k for k �= 0 are doubly degenerate.
In such cases, the expansion coefficients �C(ξ) = {C (ξ)

i1i2···ik
} with ξ = 1 and ξ = 2 obtained

from the code are not orthogonal to each other. In such cases, we use the Gram–Schmidt
orthogonalization procedure to set �C ′(ξ = 1) = �C(ξ = 1) − �C(ξ = 1) · �C(ξ = 2) �C(ξ = 2)

and keep �C(ξ = 2) unchanged after normalization.
It is well known that the ground state of the anti-ferromagnetic XXX spin chain is

never degenerate with S = 0 for N even and four-fold degenerate with degeneracy equal
to 2(2S + 1) and S = 1/2 for N odd, which all correspond to t = 0. We have verified
that the ground state energy of the system is related to the following set of eigenenergies:
E S=N/2−k

S0=−S, min(t) ≡ Ek
min(t) for k = 0, 1, . . . , [N/2], where [x] stands for the integer part of

x . It should be stated that the ground state energy at t = 1 corresponds to Ek=0
min (t), while

that at t = 0 corresponds to Ek=[N/2]
min (t). Hence, it is clear that there are also [N/2] + 1

different ground states which are mutually orthogonal with the corresponding ground state
energy Ek=0

min (t), Ek=1
min (t), . . . , Ek=[N/2]

min (t) when the control parameter t changes from 1 to 0
similar to the situation of the XX spin- 1

2 chain reported in [17]. Obviously, the quantum phase

3
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Table 1. [N/2] level-crossing points for 2 � N � 12.

N t(1)
c t(2)

c t(3)
c t(4)

c t(5)
c t(6)

c

2 0.666 666
3 0.600 000
4 0.500 000 0.666 666
5 0.566 915 0.644 004
6 0.499 123 0.566 401 0.666 666
7 0.511 933 0.623 396 0.655 288
8 0.343 259 0.570 166 0.643 104 0.666 666
9 0.462 701 0.591 992 0.642 284 0.659 828

10 0.297 378 0.527 473 0.614 872 0.652 704 0.666 666
11 0.420 934 0.559 842 0.621 991 0.650 981 0.662 104
12 0.262 455 0.490 059 0.586 57 0.634 069 0.657 415 0.666 666

transitions occurring in such cases are of first order [17]. It can be verified by the code that
all levels with eigenenergy Ek

min(t) for k = 1, 2, . . . , [N/2] are not degenerate for N even and
0 � t � 1, while they are all two-fold degenerate for N odd and 0 < t < 1. The degeneracy
of the ground state for N odd at t = 0 is 2(2S + 1) = 4, while the ground state for N odd at
t = 1 is a singlet with S = N/2 and S0 = −N/2.

The first order phase transition in the system occurs due to the ground state energy
level-crossing of Ei

min(t) with Ei+1
min (t) for i = 0, 1, . . . , [N/2] − 1 with the corresponding

critical point t ([N/2]−i)
c , which is the root of the simple linear equation Ei

min(t
([N/2]−i)
c ) =

Ei+1
min (t ([N/2]−i)

c ) for i = 0, 1, 2, . . . , [N/2] − 1. There are [N/2] such level-crossing points,
indicating that there are [N/2] + 1 different ground states within the control parameter range
0 � t � 1. Figure 1 clearly shows the ground state level-crossings in the entire control
parameter range for the cases N = 2, 4, 5, 6, 8 and 12. It is obvious that there are [N/2]
level-crossing points dividing the ground state into [N/2] + 1 different parts, each of which is
within a specific t range when N is a finite number. With N increasing, however, these specific
ranges become smaller and smaller, and finally tend to infinitesimal; thus the ground state level
becomes a continuous phase before crossing to the E0

min level. Therefore, there will be only
one obvious critical point when N → ∞. One can verify that the critical point t ([N/2])

c = 2/3
is N-independent for N even, while it will tend to 2/3 for N odd when N → ∞. Nevertheless,
other level-crossing point t (i)

c values are N-dependent, of which some examples are listed in
table 1.

Entanglement measure in the model is one of the important quantities for characterizing its
QPT behavior, and is often studied by using block–block entanglement defined in terms of von
Neumann entropy [15] or by using the Wootters concurrence [20], e.g. that shown in [21, 22].
In the following, we use the simple measure proposed in [17–19] with

η(�) = − 1

N

N∑

i=1

Tr {(ρ�)i log(ρ�)i} (7)

if all N terms in the sum are non-zero, otherwise η(�) = 0, where � stands for the ground
state wavefunction and (ρ�)i is the reduced density matrix with the i th spin- 1

2 fermion only,
which is similar to the genuine multipartite entanglement proposed in [23]. In fact, the two-
site entanglement [15, 24] and the block–block entanglement [21, 22] are different views of
the local to local correlations. In such cases, the scaling behavior of the measure has been
observed, especially in the large-N limit [21, 22]. In contrast to the measure defined in terms
of local von Neumann entropy, which provides information about local entanglement only, the
measure (7) provides information about overall quantum correlations among all sites in the

4
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Figure 1. Energy level-crossings related to the ground state of the anti-ferromagnetic case as
functions of t for different N values, where the eigenenergy is denoted by E, and the quantum
number S = −S0 for each level is labeled accordingly.

chain. It has been shown [17–19, 22, 25] that (7) is also suitable for measuring genuine N-
body entanglement in a quantum many-body system. We observed that (ρ�)i is i -independent
for the ground state in the system for cases with N even, while it becomes i -dependent for
N odd cases. Hence, the entanglement measure η for N even cases can be simply defined by
the reduced von Neumann entropy for any site, while it should be calculated separately for N
odd cases. Table 2 shows ground state entanglement in different t ranges for N = 2, . . . , 6,
respectively, in which the entanglement type of the ground state in each t range is indicated.
For example, the state is a linear combination of several GHZ-like states for N = 4 with
0 � t < 0.5, while it consists of two-fold degenerate pairs which are all linear combinations
of several W-like states for N = 5 with 0 � t < 0.566 915. It is clear that the ground
state entanglement measure gradually increases while the control parameter t decreases, which
is also characterized by the quantum numbers S and S0. In the ferromagnetic (unentangled)
phase, S = N/2 and S0 reaches its lowest value with S0 = −N/2, while S = S0 = 0
(S = −S0 = 1/2) when t < t (1)

c for N even (odd), in which the spin-up and -down fermions
are most strongly correlated in comparison to that in other phases. In the most entangled long-
range order phase, N even systems are most entangled with η = 1 which is always greater
than those of the nearest N odd systems. Furthermore, the degeneracy is doubled at the level-
crossing points t = t ( j)

c . For N even cases, the ground state is not degenerate if the control
parameter t is not at those [N/2] level-crossing points, while it becomes two-fold degenerate
when t = t ( j)

c for any j due to the level-crossing. For N odd cases, the ground state is four-fold
degenerate at t = 0 and is a singlet when t > t ([N/2])

c . Besides those two cases, the ground state
is two-fold degenerate with S = −S0 = −k + N/2 for k = 0, 1, 2, . . . , [N/2] if the control
parameter t is not at those [N/2] level-crossing points, while it becomes four-fold degenerate
when t = t ( j)

c for any j due to the level-crossing. However, these degenerate states at the
level-crossing points are still distinguishable from each other by the quantum number S and S0

with their difference 	(S0) = 	(S) = ±1 and by values of the entanglement measure of the
degenerate states. As a consequence, for the N even case, the ground state is not degenerate
when t = 0; it becomes two-fold degenerate everywhere when the control parameter t is within
the half-open interval t ∈ (0, 2/3] because the level-crossing points are dense everywhere in
this control parameter range in the N → ∞ limit; and finally it becomes not degenerate again

5
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Table 2. Ground state entanglement with each quantum phase for N = 2, . . . , 6.

N Entanglement type in each phase

2 S = −S0 = 1 S = −S0 = 0
Fully separable Bell (η = 1)
(η = 0) 2/3 < t � 1 0 � t < 2/3

3 S = −S0 = 3/2 S = −S0 = 1/2
Fully separable |ξ = 1〉 is partially separable
(η = 0) 0.6 < t � 1 (η1 = 0)

|ξ = 2〉 is a W combination
(η2 = 0.739 447)
0 � t < 0.6

4 S = −S0 = 2 S = −S0 = 1 S = −S0 = 0
Fully separable W (η = 0.811 278) GHZ combination
(η = 0) 2/3 < t � 1 0.5 < t < 2/3 (η = 1)

0 � t < 0.5

5 S = −S0 = 5/2 S = −S0 = 3/2 S = −S0 = 1/2
Fully separable |ξ = 1〉 is a W combination |ξ = 1〉 is a W combination
(η = 0) (η1 = 0.610 281) (η1 = 0.858 927)
0.644 004 < t � 1 |ξ = 2〉 is a W combination |ξ = 2〉 is a W combination

(η2 = 0.619 557) (η2 = 0.858 501)
0.566 915 < t < 0.644 004 0 � t < 0.566 915

6 S = −S0 = 3 S = −S0 = 2 S = −S0 = 1 S = −S0 = 0
Fully separable W (η = 0.650 022) W combination GHZ combination
(η = 0) 2/3 < t � 1 0.566 401 < t < 2/3 (η = 0.918 296) (η = 1)

0.499 123 < t < 0.566 401 0 � t < 0.499 123

when 2/3 < t � 1. For the N odd case, the ground state is four-fold degenerate when t is
within the closed interval t ∈ [0, 2/3] in the N → ∞ limit; and it becomes not degenerate
when 2/3 < t � 1. Nevertheless, the property of the degenerate states at t = 0 and that within
0 < t � 2/3 are different for the N odd case. The four-fold degenerate states at t = 0 come
from the double occurrence of S = 1/2, while two states from S = −S0 = −k + N/2 and
another two from S = −S0 = −(k + 1) + N/2 form the corresponding four-fold degeneracy
for 0 < t � 2/3. However, it has been proved, at least for small-N cases, that GHZ- and W-
type states are inequivalent under the stochastic local operations and classical communication
(SLOCC) transformations [25–27]. Therefore, the ground state should be classified into three
phases in the thermodynamic limit for the N even case under SLOCC. These three phases are
one non-degenerate entangled GHZ-type phase at t = 0 with η = 1, one two-fold degenerate
entangled W-type phase with t ∈ (0, 2/3] and 0 < η < 1 and one non-degenerate fully
separable phase with t ∈ (2/3, 1] and η = 0. But such QPT classification is only meaningful
under SLOCC. For the N odd case the situation is different. There is one four-fold degenerate
entangled W-type phase with t ∈ [0, 2/3] and 0 < η < 1, and one non-degenerate fully
separable phase with t ∈ (2/3, 1] and η = 0.

In summary, a Mathematica code based on the differential realization of hard-core boson
operators for constructing an energy matrix of the periodic-N spin-1/2 systems with or beyond
nearest neighbor interactions is proposed, which can easily be used to study general spin-1/2
interaction systems, such as XY or XYZ spin-1/2 chains. As an example, the code is applied
to study the anti-ferromagnetic XXX spin-1/2 chain with nearest neighbor interaction in a
uniform transverse field. The study shows how the ground state of the model evolves from
the ferromagnetic phase to the anti-ferromagnetic long-range order phase when decrease of

6
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the control parameter t introduced. In addition, we have shown that there are [N/2] level-
crossing points, of which the middle part will become a continuous one in the large-N limit
leading to a three-phase result in the thermodynamic limit for the N even case under SLOCC,
while there is only one entangled W-type phase and one separable phase in the large-N limit
for the N odd case. The effect of a magnetic field on the concurrence and resulting level-
crossing has been investigated by many groups [28–30], especially the work reported in [28],
of which the J2 = 0 case corresponds directly to the XXX spin-1/2 chain with nearest neighbor
interaction reported in this paper. Though only a 10-qubit system was considered in [28], the
level-crossings related to the ground state of the system are quite similar to the results reported
in the present work. Though the level patterns and the level-crossing positions are different
from those of the XX spin-1/2 chain studied previously in [17] and the LMG model in [30],
the quantum phase transition behavior in all these systems is similar, and should be common to
other spin interaction systems in a uniform transverse field.
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